Problem 7

For the following series, write formulas for the sequences a_{n}, S_{n}, and R_{n}, and find the limits of the sequences as $n \rightarrow \infty$ (if the limits exist).

$$
\frac{3}{1 \cdot 2}-\frac{5}{2 \cdot 3}+\frac{7}{3 \cdot 4}-\frac{9}{4 \cdot 5}+\cdots
$$

Solution

$$
\begin{aligned}
a_{n} & =(-1)^{n+1} \frac{2 n+1}{n(n+1)}=(-1)^{n+1}\left(\frac{1}{n}+\frac{1}{n+1}\right) \\
S_{n} & =\sum_{i=1}^{n}(-1)^{i+1}\left(\frac{1}{i}+\frac{1}{i+1}\right) \\
& =\left(\frac{1}{1}+\frac{1}{2}\right)-\left(\frac{1}{2}+\frac{1}{3}\right)+\cdots+(-1)^{n+1}\left(\frac{1}{n}+\frac{1}{n+1}\right) \\
& =1+\frac{(-1)^{n+1}}{n+1} \\
S & =\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left[1+\frac{(-1)^{n+1}}{n+1}\right]=1 \\
R_{n} & =S-S_{n}=1-\left[1+\frac{(-1)^{n+1}}{n+1}\right]=\frac{(-1)^{n+2}}{n+1}=\frac{(-1)^{n}}{n+1} \\
\lim _{n \rightarrow \infty} a_{n} & =\lim _{n \rightarrow \infty}(-1)^{n+1}\left(\frac{1}{n}+\frac{1}{n+1}\right)=\left[\lim _{n \rightarrow \infty}(-1)^{n+1}\right](0+0)=0 \\
\lim _{n \rightarrow \infty} R_{n} & =\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{n+1}=0
\end{aligned}
$$

